Феромоны: можно ли с их помощью исправить поведение кошек?

Синтетические феромоны кошек считаются перспективным средством решения некоторых поведенческих проблем. Ветеринары и специалисты в области поведения животных нередко рекомендуют коммерческие препараты для борьбы с нежелательным царапаньем, тревогой и последствиями стресса, приучением животных друг к другу. Тем не менее, количество и дизайн исследований феромонов не позволяют утверждать, что они действуют с доказанной эффективностью.

Что такое феромоны

Феромоны – это сигнальные молекулы, которые синтезируются в организме животных и влияют на поведение животных того же вида [1]. По химической структуре это, как правило, летучие жирные кислоты и их производные, которые вырабатываются специальными железами на теле животных. Феромоны – это одно из средств коммуникации между животными, они меняют поведение конспецификов. Например, улавливая феромоны агрегации, насекомые собираются в большие скопления. Синтетические аналоги таких веществ используют для борьбы с вредителями растений [2].

У млекопитающих также обнаружены феромоны нескольких типов и, самое главное, воспринимающие их рецепторы. В отличие от многих других летучих молекул восприятие феромонов происходит не только через обонятельный эпителий в ноздрях, но и через отдельный орган - вомероназальный (ВНО), феромоны в него попадают через ротовую полость [1].

Как работает восприятие запахов и феромонов

Обонятельные рецепторы очень чувствительны и очень специфичны – для их возбуждения достаточно нескольких молекул. Чтобы почувствовать запах, не нужно прикладываться носом к предмету – достаточно втянуть воздух в ноздри.

В общем случае обоняние работает так: молекулы вещества (одоранта) попадают с воздухом в носовую полость, которая выстлана обонятельным эпителием. Этот эпителий покрыт слоем слизи. Молекулы пассивно проходят сквозь слизь и соединяются со «своими» обонятельными рецепторами – только с теми, которые способны химически связаться с одорантом. При этом рецептор немного изменяет свою форму, и внутри нейрона запускаются химические

реакции, в результате которых возникает и проводится нервный импульс. И этот импульс передаётся на другой нейрон и по нему – в мозг. Мозг уже обрабатывает сигнал и формирует наше ощущение запаха: ага, это приятный запах розы. Животные распознают только те молекулы, рецепторы к которым есть в их ольфакторных клетках. Сложные запахи (смеси разных веществ) запускают реакции в нескольких нейронах одновременно.

Вомероназальный орган является вспомогательным ольфакторным органом. Он состоит из двух замкнутых заполненных жидкостью мешочков, соединённых тонкими протоками с носо-нёбным каналом, который, как следует из названия, открывается в носовую и ротовую полости. В обычном состоянии этот канал закрыт, и открывается он только когда кошка показывает специфическую гримасу – флемен: приподнимает верхнюю губу и на несколько секунд приоткрывает рот. В это время из ВНО в канал выходит жидкость, «собирает» феромоны, попавшие в ротовую и носовую полости – и снова втягивается в ВНО [3]. А дальше всё происходит фактически как и при передаче обычного запаха: феромоны связываются со своими рецепторами (у кошек обнаружен один функционирующий тип – VR1), после чего возникает нервный импульс и сигнал передаётся в мозг. Мозг обрабатывает поступившую информацию и отдаёт команды, которые меняют поведение кошки.

Химическая коммуникация кошек

Кошки обладают отличным обонянием и, как сказано выше, имеют работающий ВНО. Это значит, что химическая коммуникация играет важную роль в их социальной жизни: оставляя свои метки (мочой, слюной, феромонами) и считывая чужие, кошки обмениваются сигналами о социальном, эмоциональном, сексуальном статусе.

Феромоны выделяются из желез на щеках, между подушечками пальцев и из молочных желез (у кормящих самок).

Когда кошка трётся головой о предметы, людей, других кошек или делает то, что называется социальным перекатыванием (social rolling), царапает поверхности, то она таким образом распространяет свои феромоны.

Котята начинают воспринимать запахи и улавливать феромоны с первых дней жизни. Моча, слюна, молоко, материнские феромоны – всё это создаёт «аромат» гнезда и служит ориентиром (olfactory reference point) для котёнка: он знает, куда возвращаться, если отполз в сторону. Невосприимчивые к запахам котята не могут найти гнездо [4]. Кроме того, кошки регулярно обновляют феромонные метки, поэтому та территория, на которой держится их «аромат» (индивидуальный и групповой) служит ольфакторным ориентиром в любом возрасте.

Типы кошачьих феромонов

Известны три типа феромонов и несколько видов внутри каждого типа (таблица 1) [4].

Таблица 1. Виды и функции феромонов кошек

Виды феромонов		Где вырабатываются	Для чего служат
Лицевые феромоны кошек (FFP)	F1	Железы на щеках (точное название и локализация)	Неизвестно.
	F2		С их помощью самцы проявляют сексуальное поведение, например, потираясь головой рядом с привлекательной самкой.
	F3		С их помощью кошки помечают знакомые объекты. Возможно, F3 служит для ориентации в пространстве.
	F4		Выделяются при трении о других животных и людей. Часто кошки используют эти феромоны в присутствии знакомых индивидов. Считается, что этот вид феромонов вызывает поведение, сигнализирующее о привязанности, при этом снижается вероятность агрессии к другому животному или человеку.
Feline appeasing pheromone (FAP)		Молочные железы кормящей самки	Успокаивает котят и вызывает привязанность к матери.
Межпальцевые сигнальные молекулы (FIS)		Железы между подушечками лап	Кошки распространяют вещества из межпальцевых желез, когда царапают какие-либо поверхности. Там, где кошка царапает или точит когти регулярно, накапливается запах, который может служить

Виды феромонов	Где вырабатываются	Для чего служат
		ольфакторным ориентиром.

Использование феромонов для коррекции поведения

Если натуральные феромоны обладают биологическим действием, то есть корректируют поведение других особей, то и синтетические аналоги по идее могут оказывать такое же действие.

Для решения распространённых поведенческих проблем кошек есть соответствующие коммерческие продукты на основе синтетических аналогов лицевого феромона F3, FAP и FIS.

- 1. Носитель F3 рекомендуется помещать в тех местах, где кошка отдыхает чаще всего. Этот феромон используется для помечания собственной территории и служит для ориентации в пространстве и, возможно, в качестве маркера базы безопасности. Считается, что его использование помогает снизить тревожность и стресс новизны у кошек, а также справиться с нечистоплотностью, обусловленной стрессом. Миллз и др. провели метанализ [5] работ, изучавших влияние в том числе и F3 на мечение струёй (связанное со стрессом), и пришли к выводу, что феромоны могут дать положительный эффект спустя четыре недели использования. Но есть нюанс: эти работы не позволяют перенести результаты на всю популяцию из-за особенностей проведения экспериментов. В ещё одной работе F3 не был эффективен против стресса новизны при посещении ветклиники [6], хотя в более ранней работе на эту же тему феромоны были эффективны [4]. В целом единого мнения на этот счёт нет.
- 2. Считается, что FAP помогает сформировать привязанность между кошкой и котятами, поэтому его предлагают использовать для примирения конфликтующих животных и для того, чтобы избежать конфликтов между ранее не знакомыми кошками, попавшими в один дом. Для этого рекомендуют размещать диффузоры в тех местах, где животные бывают чаще всего. Если кошки пользуются не одним помещением, то необходимо несколько диффузоров. Кристин Виталь в обзоре трёхлетней давности [4] упоминает лишь одно пилотное исследование, посвящённое действию FAP на кошек, чего, к сожалению, недостаточно, чтобы уверенно говорить об эффективности этого средства. В более позднем эксперименте FAP усиливало дружелюбное поведение кошек по отношению к собакам, проживающим в одном доме [7].

3. Препарат с FIS, например, Feliway Feliscratch наносят на когтеточку, чтобы побудить кошек пользоваться именно ею и прекратить точить когти о неподходящие предметы. Впрочем, кошачья мята в составе не позволяет наверняка утверждать, что именно действие феромона является решающим. Так, в одной из недавних работ выяснилось, что кошачья мята и актинидия привлекали кошек к когтеточкам гораздо сильнее феромонов [8]. В другой работе кошачья шерсть привлекала котят сильнее, чем кошачья мята [9], правда, авторы не уточнили, с какой части тела состригли шерсть и могла ли она нести какие-то феромоны, а не просто служить источником привлекательного для котят запаха.

Эффективны ли феромоны?

Использование феромонов и синтетических аналогов выглядит разумным и перспективным: мы полагаем, что у животных включатся внутренние механизмы и проблема решится без поведенческой коррекции.

Одно но: всё это изучено не очень хорошо.

Самый главный вопрос: насколько действие феромонов обусловлено именно их свойствами (успокаивать, примирять, стимулировать царапанье), а насколько это результат ассоциативного обучения в очень раннем возрасте? Будет ли кошка, оставшаяся сиротой и выкормленная искусственно, реагировать на феромоны, если у неё не было раннего опыта? На сегодня таких данных нет.

Эффективность феромонов изучают в экспериментах, но у многих из них есть методические проблемы.

Стандартом доказательной медицины считается двойное слепое плацебо-контролируемое исследование. В нём ни участники (владельцы животных, люди, которые ухаживают за ними), ни экспериментаторы не знают, какая кошка в какую группу попала. Это позволяет избежать эффекта плацебо, не допустить неосознанной разницы в отношении к животным (которая сказывается на их поведении). Например, если хозяин знает, что его кошка находится под действием феромонов, то он может внимательнее относиться к ней, проводить больше времени – а может и наоборот, меньше уделять ей внимания, считая, что и так всё будет хорошо.

Также необходим контроль – группа животных, на которой не испытывают действие феромонов. Поведение животных может со временем меняться не только из-за каких-то веществ, но и само по себе или под действием неизвестных факторов. И если нет контрольной группы, то никто не может уверенно утверждать, что это подействовали именно феромоны. В конце концов, привыкания и жизненного опыта никто не отменял.

Многие исследования феромонов проводятся именно без контрольной группы, а исследователи и владельцы не всегда ослепляются (то есть они знают, что на кошек действует что-то, что должно помочь исправить их поведение). В этом главный недостаток существующих работ, показывающих эффективность и неэффективность феромонов. Например, производитель коммерческих феромонных препаратов CEVA решил проверить, как действует новая смесь [10]. Для этого исследователи (сотрудники компании) замерили уровень нежелательного поведения кошек, роздали владельцам диффузоры и попросили еженедельно отчитываться об изменениях в поведении питомцев. От контрольной группы отказались. В итоге выяснилось, что поведение кошек

улучшилось. Но это нельзя считать доказательством эффективности феромонов, потому что всё, что мы знаем – это отчёты владельцев, на которых, возможно, действует эффект плацебо. И это не единственная работа, выполненная сотрудниками CEVA, без контрольной группы [11]. Но именно на основании таких отчётов продукция выпускается, рекламируется и используется.

Феромоны могут улучшать поведение животных, особенно если хозяева в это верят.

Уповать только на диффузор или ошейник не стоит – феромоны нужно применять вместе с другими способами поведенческой коррекции: обогащение среды, совместные игры, обеспечение кошек ключевыми ресурсами и правильная планировка пространства необходимы в первую очередь. Если кошке не удобен лоток или не подходит наполнитель, если ей не предоставили когтеточку, то одни только феромоны не исправят ситуацию.

Ксения Авимова для «Бэд кэтс»

Литература:

- 1. Vitale Shreve, K.R. Stress, security, and scent: The influence of chemical signals on the social lives of domestic cats and implications for applied settings / K.R. Vitale Shreve, M.A.R. Udell // Appl. Anim. Behav. Sci. 2017. Vol. 187 P. 69-76.
- 2. Kuhar, T.P. Potential of a synthetic aggregation pheromone for integrated pest management of Colorado potato beetle / T.P. Kuhar, K. Mori, J.C. Dickens // Agric. For. Entomol. 2006. Vol. 8, № 1. P. 77-81.
- 3. Bradshaw, J.W.S. The Behaviour of the Domestic Cat / J.W.S. Bradshaw, R.A. Casey, S.L. Brown. CABI, 2012. 256 p.
- 4. Vitale, K.R. Tools for managing feline problem behaviors: Pheromone therapy / K.R. Vitale // J. Feline Med. Surg. 2018. Vol. 20, № 11. P. 1024-1032.
- 5. Mills, D.S. A Meta-Analysis of Studies of Treatments for Feline Urine Spraying / D.S. Mills, S.E. Redgate, G.M. Landsberg // PLoS One. 2011. Vol. 6, № 4. P. e18448.
- 6. Effects of Waiting Room and Feline Facial Pheromone Experience on Blood Pressure in Cats / L.R. Van Vertloo [et al.] // Front. Vet. Sci. 2021. Vol. 8.

- 7. Prior, M.R. Cats vs. Dogs: The Efficacy of Feliway FriendsTM and AdaptilTM Products in Multispecies Homes / M.R. Prior, D.S. Mills // Front. Vet. Sci. 2020. Vol. 7.
- 8. Zhang, L. Scratcher preferences of adult in-home cats and effects of olfactory supplements on cat scratching / L. Zhang, J.J. McGlone // Appl. Anim. Behav. Sci. 2020. Vol. 227 P. 104997.
- 9. Abstract #392 [Электронный ресурс]. Режим доступа: https://m.jtmtg.org/abs/t/63342. Дата доступа: 16.06.2021.
- 10. An Initial Open-Label Study of a Novel Pheromone Complex for Use in Cats / X. De Jaeger [et al.] // Open J. Vet. Med. 2021. Vol. 11, Nº 03. P. 105-116.
- 11. Effect of a synthetic feline pheromone for managing unwanted scratching / A. Beck [et al.] // Int J Appl Res Vet Med. 2018. Vol. 16 P. 13-27.